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We present here a simple unified derivation of the exact Fokker-Planck 
equation obtained earlier by Zwanzig and the exact Langevin and transport 
equations derived by Mori. The derivation, based on the use of a Hilbert 
space formulation of the dynamics, leads to substantial generalizations 
of these results in a straightforward manner. We obtain nonlinear Langevin 
equations for classical systems and discuss the extension of the theory to 
driven transport and to quantum dynamics based either on the use of 
density matrices or F-space densities as suggested by Wigner. Remaining 
limitations of the theory are pointed out. 
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1. I N T R O D U C T I O N  

W e  shal l  be  c o n c e r n e d  he re  w i t h  t h e  d e r i v a t i o n  o n  t h e  bas i s  o f  m i c r o s c o p i c  

f i rs t  p r inc ip l e s  o f  a n  exac t  gene ra l i z ed  B r o w n i a n  m o t i o n  t h eo ry .  T h e r e  are  
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already a large number of articles published on this topic, which has seen 
rapid development over the last fifteen years, and recently the emphasis has 
shifted from basic theoretical work to application. Here we shall, however, 
reexamine the very foundation of the theory. The justification for so doing 
is twofold: (i) We would like to present what we feel is a particularly simple 
derivation of the exact generalized Brownian motion theory which unifies 
and clarifies the many important original contributions to this field; (ii) on 
the basis of this derivation we would like to point out a number of straight- 
forward but important extensions of the theory while at the same time focus- 
ing attention on the remaining limitations of the theory. 

Brownian motion theory in its many forms has a long and distinguished 
history. In its traditional form the theory dealt with the motion of a physically 
separable subsystem such as a colloidal particle in contact with a medium 
which supplies a stochastic force. The theory was phenomenological. That 
is, no attempt was made to base the stochastic theory on the exact equations 
of motion of the total system. Excellent reviews of this approach to Brownian 
motion are available. (1'2~ In the early 1950's. Green C3~ argued forcefully 
that the traditional theory of Brownian motion should be eztended to the 
study of a much larger class of time-dependent phenomena in statistical 
mechanics. The main idea was to replace the Brownian particle by some 
sufficiently large set of gross variables and then use the traditional methods 
of stochastic theory to derive transport laws satisfied by these gross variables. 
Although the phenomenological stochastic theory approach to generalized 
Brownian motion has by no means been abandoned, (~ much interest has 
now been drawn to the possibility that the phenomenological character can 
be dropped and the theory be based entirely on microscopic first principles.. 
Significant progress in this direction has been made on the basis of projection 
operator techniques suggested by Zwanzig (5~ in 1960 and used by him to 
derive an exact generalized Fokker-Planck equation. (6) Mori (7) obtained a 
linear generalized Langevin equation in 1965 using similar projection opera- 
tor methods and Kawasaki, (8~ in the process of constructing a mode-mode 
coupling theory of critical dynamics, noted that Mori's equation by a straight- 
forward extension could be applied also to nonlinear phenomena. 

In recent years the basic ideas of the generalized Brownian motion 
theory have been applied to the study of equilibrium time-correlation 
functions, (~) kinetic theory, (1~ transport coefficients, (13-16~ quantum 
optics, ~17,~8) and other problems, and time-dependent projection operators 
have been used. (19'9~ Despite this proliferation of applications of the basic 
ideas, the contributions are fragmented due to the use of seemingly dissimilar 
derivations and the status of the generalized Brownian motion theory is 
hard to glean from the literature. It is for this reason that we would like to 
present here a particularly simple but still general derivation of the generalized 
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Brownian motion theory. This derivation results in a complete unification of 
the master equation or Fokker-Planck equation approach and the Langevin- 
transport equation approach to nonequilibrium dynamics. Apart from the 
very important pedagogical advantage, it also allows us to point out a num- 
ber of straightforward extensions of the theory together with the remaining 
limitations of the basic methods used. 

In Section 2 we introduce the classical form of the Hilbert space rep- 
resentation of dynamics upon which our derivations are based. The deriva- 
tion of the Langevin and transport equations in the case of a closed classical 
system is illustrated in detail in Section 3.1. for both the linear and the 
nonlinear cases. Section 3.2. extends the results to yield the generalized 
Fokker-Planck equation and Section 3.3 shows how time-dependent ex- 
ternal driving forces can be incorporated in the derivations. We then examine 
how the quantum effects will enter the theory. In Section 4.1 we use the 
traditional density matrix formulation as a basis and in Section 4.2 we point 
out the advantages of a F-space formulation of quantum dynamics as an 
alternative basis for the derivations. 

2. STATE V E C T O R  F O R M U L A T I O N  OF CLASSICAL 
D Y N A M I C S  

The exact microscopic derivation of a generalized Brownian motion 
theory will start from the Liouville equation, 

(O/Ot)f(t; F) = - iL f ( t ;  F) (1) 

where F is a multidimensional coordinate summarizing all the positions 
and momenta of a point particle system, f ( t ;  F) is a probability density in 
F-space, and L is the Liouville operator, 

LB(F) = - i(B(F), H(r)}p~ (2) 

[{, }PB is the Poisson bracket and H(F) is the Hamiltonian], or the derivation 
will start from the equation of motion of the time-dependent property 
functions 

(O/Ot)A(t; F) = iLA(t; P) (3) 

Applying projection operators in a Hilbert space of probability densities to 
the Liouville equation, one obtains generalized Fokker-Planck and master 
equations, (5,6> while projection operators in a Hilbert space of property 
functions applied to Eq. (3) yield Langevin and transport equations. (v) 
In fact, the two starting points are equivalent and either one of them is 
sufficient by itself as a starting point for the derivation of a generalized 
Brownian motion theory. 
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Previous derivations can be unified and considerable conceptual ad- 
vantages can be gained by exploiting further the Hilbert space formulation of 
classical dynamics implicit in earlier work. Note that in statistical mechanics 
the information we seek takes the form of an average value of some relevant 
property A(17), 

f dP f (0 ;  r)A(t; r )  (4) (.4), 

The information available at the start of the experiment at t = 0 determines 
the probability density f (0  ;P) and the time dependence is here taken to be 
carried by the time-dependent property functions satisfying the equation of 
motion (3). However, the same information can be obtained by solving the 
Liouville equation and using the relation 

f dr f ( t ;  F)A(F) (5) (Ah 

Thus the time dependence can be carried by either the property function or 
the probability density. 

It should now be noted that the familiar relations (4) and (5) have the 
form of scalar products in a Hilbert space of functions of F. In order to 
exploit this observation, we construct a Hilbert space which contains all 
necessary property functions and probability densities so that (1) and (3) 
become linear first-order differential equations in this space and (4) and 
(5) can be written as 

(A), = (A(t),f(O)) = (A,f(t)) (6) 

We shall assume that the scalar product can be defined by 

= f dr  A(F)B*(17) (7) (A, B) 

where the asterisk indicates complex conjugation. Since f(t; 17) is real, (6) 
will then be equivalent to (4) and (5). 

It will not be our purpose here to examine in any detail the mathematical 
justification for the construction of such a Hilbert space of classical dynam- 
ics. That it is possible to do so is suggested already in the classic work by 
Koopman (21~ and von Neumann. (22~ The crucial point is that now both the 
properties and the probability density are vectors in the same Hitbert space 
and the information is extracted by taking a scalar product between a property 
vector and a state vector as in (6). This will allow us to derive the basic 
equations of the exact generalized Brownian motion theory in a particularly 
simple and general way by using standard manipulations of Hilbert space 
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operators well known from quantum mechanics. As a first example, we note 
that Hamilton's equation (3) has the formal solution 

A(t; I') = eiLtA(r) (8) 

which when inserted in (4) yields (5) after shifting the operator e ~u from one 
side to the other in the scalar product and noting that L will normally be a 
Hermitian operator. By this simple manipulation one easily gets from (3) 
to the Liouville equation (1). 

It is important to note that the dynamical Hilbert space is not unique. 
The scalar product (7) may be generalized to 

(A, B) = f dr' A(I,)B*(I,)w(r) (9) 

where w(i,) is a real-valued and nonnegative weighting function. The corre- 
sponding Hilbert space will be denoted ~~ It is not hard to see that 
w(i,) controls the resolution of the Hilbert space. Suppose, for example, 
that there is a volume in I,-space w(i,) vanishes. Then we find that functions 
which differ only in this volume will not be resolved by ~r ). Clearly 
the dynamical problem we wish to solve will introduce certain requirements 
upon the resolution and thus limit the range of functions w(i,) that could be 
used. Moreover, one normally would find it convenient to choose w(i,) to 
be a stationary function in the unit metric, 

i rw( i , )  = 0 (10) 

since this will mean that L is Hermitian in Jf'(w[ I,) if it is in ~ ( 1  If,). 
The unit metric, w(i,) -~ 1, would perhaps appear most natural to work 

with. The state vector can then be identified as the conventional probability 
density and ~,~g(1 If,) will generally be a multidimensional L2-space. However, 
it is often very convenient to adapt the metric to the equilibrium state of 
the statistical ensemble with which one is working. Thus we shall make use 
of the canonical equilibrium metric defined by 

w ( i , )  = di" e-omr) = p(fl; P) (11) 

For a finite system w(i,) will vanish only if H(I,) is infinitely large. However, 
if the initial energy is finite, such states will not be visited since energy is 
conserved, so the physically relevant states should be well resolved. 

3. D Y N A M I C S  IN A REDUCED DESCRIPTION 

3.1, Langevin and Transport Equations 

Not only does the above Hilbert space framework expose the statistical 
content in a simple fashion, but it is also a very convenient starting point 
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for the reduction of the description of the system to some small subset of 
chosen variables. Let us first assume that we are only interested in the time- 
dependent averages of the functions {Aj(P)}ft= 1 corresponding to some set 
of properties of the system. Recalling relation (6), we note that these averages 
are given by the projection of the time-dependent state vector on the re- 
spective property vectors. I f  we then let P be a projection operator corre- 
sponding to the subspace of 9f~ P) spanned by the set of vectors {Aj(F)}~= 1, 
it follows that 

( A j h  = (Aj(r) , f~(t;  r))  = (Aj(P), Pf~(t; F)) (12) 

Thus we see that all of the relevant information is contained in a reduced 
state vector Pf~,(t; F) belonging to a space, PaCa(w]P) = 9r of much 
smaller dlmensionality. 

The hope raised by the relation (12) is that perhaps we can limit our 
dynamical problem to the subspace sYgA. To verify this, we shall first seek an 
equation of motion for Pf, o(t; F) which makes no reference to the remaining 
part of the complete state vector (1 - P ) f ~ ( t ;  r )  containing orthogonal 
information. Applying the projection operators P and (1 - P) to the Liouville 
equation (1), we obtain (5) 

~ Pf~(t; F) = -PiLPfw(t; r )  - PiL(1 - P)fw(t; F) (13a) 

2 (1 - P)fw(t; r )  = - (1  - P)iL(I - P)fw(t; P) - (1 - P)iLPf~(t; r )  (13b) 
3t 

Formally solving the second equation, noting that it is inhomogeneous and 
of first order, we get 

(1 - P)fw(t; r) = e-"~l-r)L(1 -- P)fw(0; r )  

f ds e-~m-P)L(1 e)iLPf~o(t s; I') (14) 

This result substituted into (13a) yields 

f; ~Pfw(t;  P) = -PiLPfoJ(t; P) + - P)iLPfw(t - s; P) ds PiLe- iS(1- P)L(1 

- PiLe-~t(~-V~L(1 -- P)f~(0; P) (15) 

The rate of change of the vector Pf~(t; F) representing relevant 
information has now been separated into three parts. The first part, 
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-P iLP fw( t ;  r) ,  is directly related to Pfw(t; P) itself, and it is the Markovian 
part of the rate of change. 

The second part, StodSPiLe-~S(1-V)L(1- P ) i L P f w ( t -  s; P), represents 
the effects of relevant information which has leaked from the chosen sub- 
space ~ to its orthogonal complement ~ .  More specifically, ( 1 -  
P)iLPw(t - s; F) is the flow of information from ~ to ~ a  at earlier time 
t - s. The operator e -~s(l-v)L propagates this information forward in time 
while keeping it orthogonal. The operator PiL on the left measures the effect 
of such orthogonal information upon the time development of Pfw(t; F), 
and, finally, the integration sums such effects over the time at which the 
orthogonal information left ~ .  This term represents memory effects and 
will, therefore, be called non-Markovian. 

The third part, --PiLe-~t(1-v)L(l --P)fw(O; F), represents the effects 
of that part of the instantaneous orthogonal information that was orthogonal 
also at t = 0 and never left ~ .  

Note now that if the third term vanishes, as it will if there is no orthogonal 
information at t = 0, 

(1 - P ) f ~ ( o ;  r )  = o (16) 

then (15) becomes an equation of motion for the reduced state vector dosed 
in the corresponding subspace a~ffa, just as desired. 

We shall now go on to show that corresponding linear transport equa- 
tions can be obtained from (15) by a simple manipulation. We start from the 
following relation for the rate of change of the average: 

~-~ (Aj ) t  = (A j, -~ Pfw(t)) 

= - (A~, PiLPfw(t))  

+ ds ~rAj, PiLe -tscl-e)Lt'~. - P)iLPf,  o(t - s)) 

- (A j, PiLe -'tr - P)fw(O)) (17) 

Noting that P, (1 - P ) ,  and L are Hermitian operators and i is anti- 
Hermitian, we shift the operators from right to left in the scalar product 
and obtain 

(a /a t ) (Aj ) t  = (PiLAj,  fw(t)) + ds(PiLe  '~(~-e)L 

x (1 - P)iLAj,  fw(t - s)) + (en(1-P)L(1 -- P)iLAj,  fw(O)) (18) 
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Next we use the fact that any vector in JYa can be expanded as a linear 
combination of the vectors {Aj(F)}~= 1 to write 

M 

PiLA,(F)  = ~ cj,~A,(F) (19) 
/ = 1  

M 

PiLe~S(l-P~z(1 - P) iLAj(F)  = ~ ds,z(s)A~(F ) (20) 
l = 1  

I f  we assume that the chosen properties are linearly independent, then the 
coefficients in the above expansions are unique and are given by 

c = (PiLA,  A,)(A, ~)-1 (21) 

d(s) = (PiLe ~(1 -e~z(1 - P)iLA,  .4,)(A, .~)-z (22) 

Here we have used matrix notation such that a vector is a column matrix 
and the tilde above a matrix indicates transpose. Although, in principle, 
it is always possible to pick the chosen variables so that they are linearly 
independent, it may not always be convenient to do so. We wish to emphasize 
that given correct expansions (19) and (20), the theory is valid also for linearly 
dependent variables. An expansion method which works also for linearly 
dependent variables may, for example, be based on the well-known Gram- 
Schmidt orthogonalization procedure. 

Using these expansions, we can rewrite (18) in vector notation as 
follows: 

s (O/~t)(A)t  = c (A ) t  + as d(s)(A)t_~ + (F(t))o (23) 

In the last term we have set 

F(t; r )  = e ' " l - " L ( 1  - e)iLA(r) (24) 

We observe that if (F(t))o vanishes, as it would if (16) is satisfied, then (23) 
becomes a linear, generally non-Markovian, transport equation 

f2 (0/Ot)(A)t = c(A)t + ds d(s)(A)~_~ (25) 

The corresponding Langevin equation describes the time development 
of a single experiment. Thus it can be obtained from Eq. (23) by taking the 
limit as f~(0; F) approaches a 3-function describing the initial conditions 
for a single system. Noting that in this limit there is no dispersion in the 
ensemble, we get 

f2 (O/Ot)A(t; F) = cA(t; F) + ds d(s)A(t  - s; r )  + F(t; P) (26) 
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The linear Langevin and transport equations (25) and (26) were first 
obtained by Mori (7) for the case when w is the canonical equilibrium density. 
His derivation made use of projection operators in Hilbert space, but other- 
wise bears little resemblance to the present derivation. As pointed out by 
Mori, the fluctuating force F(t; F), representing the effect of orthogonal 
information in a single experiment, is related to the memory kernel d(t)  
by a fluctuation-dissipation theorem which for linearly independent variables 
reads 

d(t)  = - (F(t + s), F(s))(A, ,i)-1 (27) 

This is easily verified if we note that 

(F(t + s), F(s)) = (e'Ct+~xl-e)L(1 - P ) i L A ,  e~S(1-e)L(1 - P ) i L A )  

= - (P iLe  *t(1 - P)L(1 -- P ) i L A ,  A )  (28) 

and compare to (22). 
It should now be clear that whether the relation (26) deserves the name 

Langevin equation or not depends on the statistical ensemble with which it 
is associated. A sufficient condition is that the initial state vector describing 
this ensemble contains no orthogonal information so that (16) holds. It then 
follows that the average of the fluctuating force vanishes, and the linear 
transport equation (25) is satisfied. This condition imposes a rather severe 
limitation on the validity of the linear Langevin and transport equations. 
However, we shall see that the study of equilibrium time correlations and 
small deviations from equilibrium allow the use of the linear theory. 

The equilibrium time-correlation matrix O(t) is defined by 

f dF  Aj ( t ;  F)A,*(F)p(f l ;  F) (29) oja(t) 

where p(/3; F) is the canonical equilibrium density. But this can be written 
as a scalar product in the Hilbert space with w(F) = p(/~; F), 

Oja(t ) = (Aj( t ) ,  A,) = ( A j ) t  (30) 

where the initial state vector is just A,(F), which satisfies (16). Thus we find 
immediately that the time-correlation matrix satisfies 

f2 (e/Ot)O(t) = cO(t) + ds d(s)O(t - s) (31) 

In a more general case we may suppose that the initial information is 
provided in the form of the initial values for the averages of the chosen 
properties, A {( ~}o)j= 1. There is a whole range of initial state vectors that are 
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consistent with these averages but it is customary to chose the one that 
minimizes the information defined in ~ ( I [F )  by 

1(0) = f drA(0; r) lnfa(O; F) (32) 

Given that the average energy is also known, the initial state vector will then 
be of the form 

A(o; r) = C exp[-/3H(r) + v.A(r)]  (33) 

where the coefficients/3 and y are determined by the known averages. In 
~(p(fl)lF) the corresponding initial state vector would be 

fa(O; I ~) = C' exp[y.A(r)] (34) 

which, generally speaking, does not belong to ~A(p(fl)][ ') .  However, if 
the deviations of the initial averages {(Aj>0}~= 1 from their equilibrium values 
are small, one may approximate fa(0; F) by C'(1 + y.A(V)). Choosing our 
variables so that 1 c ~ or 1 c ~r we easily verify that (F(t)>0 vanishes 
to first order in y, and thus the linear theory is valid in the limit of small 
deviations from equilibrium. 

Although the linear Langevin equations of Mori have been found quite 
useful, the limitation pointed out above excludes from consideration the 
general case when initial deviations from equilibrium cannot safely be 
assumed small. Moreover, it should be noted that even when it is applicable, 
the linear theory may turn out to be impractical if a significant part of the 
dynamics is contained in the form of memory effects. An example of current 
interest is critical dynamics, where the deviations from equilibrium become 
large due to the closeness to a second-order phase transition. 

We shall now proceed to show that the derivation of the linear Langevin 
equation can easily be extended to give Langevin equations of any desired 
degree of nonlinearity. This is done simply by replacing the projection 
operator P above by one that corresponds to an enlarged subspace of 
~(wlF).  Thus we define ~ ,  as the subspace spanned by all products of the 
properties {A~.(17)}~= 1 up to and including those of order n, Ajl(I')Aj2(P).-- 
As,(I'), and the corresponding projection operator will be denoted Pn. The 
reduced state vector P~fw(t;  17) now contains complete information about 
moments of order n or smaller, 

(As1 "" Ay=>t = (A~ 1 "'" A j . ,  Pnfw( t ) ) ,  m <~ n (35) 

but no more information. 
The equation of motion for P , f w ( t ;  F) is obtained from (15) by just 

adding the subscript n everywhere P occurs, and the same can be done to the 
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equation (18) for the time-dependent moments. However, the expansions 
(19) and (20) now take the following form: 

M M M 

P , i L A , ( r )  = ~ cj. t lA,~(r) + . . .  + ~ . . .  ~ ,  cs, ,~. . . ,  A , l ( F )  .. .  A, , ( I ' )  (36) 
11=I ll=l /n=i 

P ,  iLe~Cl - P .)L(1 - P~) iLA j ( r )  

M M M 

= ~ aj.,~(s)A,~(r) + ... + ~ ... ~ d,.,c..,.(s)A,~(r ) ... A~.(r) 
/ 1 = 1  1 1 = 1  I n = l  

(37) 

Such expansions do exist but the coefficients are not uniquely determined 
since all of the ordered product vectors are not linearly independent. The 
vector is, for example, unchanged by a permutation of order. Thus the set 
of product vectors satisfying ll <<. 12 ~ ... <<. lm, m <<. n, suffices to expand 
~ , ,  but even in this reduced set we may find linear dependence. 

Substituted into the generalized form of (18), the above expansions 
yield 

M 

at Ii=i ll=l ln=l 

x (A~  ... A,.)~ + as 4.~(s)(A,1),_, + ... 
kl1= I 

} + ~ ... ~ dj.~l...,.(s)(A~l ... A~.)~_~ + (F;<'(t))0 (38) 
11=1 l n = l  

where 

0 
e-7 Aj(t; r )  = 

Fj<")(t; P) = e it<l- e.)L(1 -- P , ) i L A j ( P )  (39) 

If (Fj<">(t))o vanishes for all j, then (38) can be turned into a Langevin 
equation by considering again a subensemble of only one system. We obtain 

M M M 

c , , , 1 A , t ( t ;  r )  + .. .  + .. .  c , . t l . . . , .  
ll=l /i=1 In=l 

<,; x A,~(t; r)  ... A,.(t; I') + ,Is r)  + ... 
1 

., } 
+ ~ . . . .  ~ 4.,1.. . , ,(s)Atz(t -- s; F)-.-Az,(t - s; r) 

/1=i In=l 

+ Fy(")(t; r)  (40) 

For the minimum information initial state (34) we note that 

(Fj<")(t))o = o(Ivl .+1) (41) 
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and thus effects up to order n in IYI are accounted for in the nth-order 
nonlinear Langevin equation. The fully nonlinear equation obtained from 
(40) by setting n equal to infinity is an exact Langevin equation for the initial 
state vector (34) as well as any other initial ensemble which contains no 
information about properties orthogonal to the subspace Yga=. 

It should be pointed out in this context that if we maximize the linear 
part of the memory effects occurring in the nonlinear Langevin equation and 
assume the linear variables {Aj(I')}~= 1 to be independent, then the fluctuation- 
dissipation theorem (27) holds exactly also in the nonlinear case. That is, 
the linear memory is directly related to the time correlation of the fluctuating 
forces. The nonlinear memory is clearly also related to the time correlation 
of the fluctuating forces since they depend on the same orthogonalized 
propagator, but the relation is less direct than in the linear case. 

We find then a much greater range of validity for the nonlinear Langevin 
equations in comparison with the linear equations. However, we must 
point out one added difficulty with the nonlinear formulation. Due to the 
dispersion in the statistical ensemble we have in general 

(A ,  1 -.. A ~ ) ,  # (A~I)~ ... (A~=)~ (42) 

and (38) is not closed in the first moments even if (F/"~(t))o vanishes. 
Neglecting the dispersion and using (42) as an equality, (38) turns into a bare 
transport equation but this may not be a good approximation, in which case 
the simple relation between Langevin and transport equations is lost. Par- 
ticularly in the case of critical dynamics there is a need to fluctuation- 
renormalize the bare nonlinear transport equations. A general scheme of this 
sort has been proposed and discussed elsewhere. (2a~ 

3.2. Microscopic Fokker-Planck Equations 

We have seen above how to derive, by exact projection operator methods 
in Hilbert space, microscopic analogs of the Langevin and transport equations 
of traditional Brownian motion theory. The third aspect of this theory con- 
cerns the time development of the probability density of the chosen variables 
as determined by the Fokker-Planck equation. In an important early applica- 
tion of the projection operator methods Zwanzig (6~ showed how under certain 
conditions exact microscopic Fokker-Planck equations, generally of non- 
Markovian character, could be obtained, and he suggested simplifying 
approximations. We shall now use the results of preceding sections to point 
out how the Fokker-Planck equation fits into the general theory and to 
outline a straightforward derivation which somewhat generalizes the class of 
equations obtained by Zwanzig. 

Let us suppose that we define a new set of coordinates which collectively 
form the vector coordinate a by the relation A(I') = a. That is, the new 
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coordinates are just the values of the properties we have chosen to study. 
Then all the information about these properties can be collected into a 
probability density g(t; a), a function in a-space satisfying 

(Azl "" Az~)t = f da all "'" a~mg(t; a) (43) 

Thus this function contains all of the information in the reduced state vector 
eo~f,o(t; F). 

The equation of motion of g(t; a), which we shall now seek, is called a 
Fokker-Planck equation for the time-dependent properties. We note first 
that g(t; a) can be obtained from Poof~(t; F) by application of the coordinate 
transformation. One easily verifies that the desired transformation can be 
written as follows: 

= ( d r  3(a(E) - a)w(r)Poof~(t; E) g(t; a) (44) 
d 

where 
M 

8(A(r) - a) = ~ ~(A,(r) - a3 (45) 
j= l  

We now apply this transformation to the equation of motion of 
P=f~(t; F) as given by (15) with P replaced by P~. The details of the calcu- 
lation are available elsewhere (2~) so we merely note that the result is the 
following equation of motion for g(t; a): 

0 
a-~ g(t; a) 

a, + ds da' K~,z(a, ;s)S(w[a) g ( t - s ; a ' )  
k=l  /= l~a~  

• S - l ( w l  a') - S(w]a)Y(t; a) (46) 

Here v(a) is a generalized streaming velocity defined by 

v,(A(F)) = P j L A , ( L )  (47) 

We note that the microscopic Fokker-Planck equation is generally nonlocal 
in both space and time with a kernel K(a, a ' ;  t) defined by 

Kk,,(a, a';  t) 

= S-l(w[a) f dF w(I?) 3(A(I?) - a) 

x (iLAk(I'))e-~t(~-v='z(1 - P~o)(iLA,(F)) 8(A(F) - a') (48) 
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Finally, unless the initial ensemble f~(0; F) contains only information con- 
cerning the chosen variables, there will be an inhomogeneous force in the 
Fokker-Planck equation given by the last term on the right in (46), where 

Y ( t ;  a) = S-l(wla) f dF oJ(F) g(A(F) a) 

• P ~ i L e - ~ a - P ~ ) L ( 1  - -  P~)fw(0, F) (49) 

The function S(wla ) appearing in these relations is the structure function 

S(wls) -- d r  w(r)  g(A(r) - a) (50) 

which accounts for the Change in measure as one transforms from r-space 
to a-space. 

The original derivation of Zwanzig corresponds to the special case when 
the unit metric w(F) = 1 is used in F-space and the initial ensemble density 
is 

f(0;  F) = 8(A(V) - ao) S-1(1 lao) (51) 

so that g(0; a) is a g-function and there is no orthogonal information initially. 
Thus the inhomogeneous force will vanish in this case. 

A word of caution concerning the use of g-functions is called for. Although 
they are of great use in various branches of physics, it is well known that 3- 
functions are functions only in a generalized sense, and they are usually used 
merely to represent a well-defined limit process. Thus it should be noted that 
the g-functions appearing above must be properly interpreted as limit func- 
tions in the Hilbert space of the dynamics. It may sometimes be necessary 
to give explicit consideration to the limit process represented by the g-func- 
tion. In the derivations presented here, no use of the g-functions has been 
made in the basic formulation of the theory, and their role in the variable 
transformation performed above to obtain the Fokker-Planck equation is 
straightforward. In this regard we feel our derivation above is an improve- 
ment upon a recent derivation by Mori and Fujisaka (~3) of an exact Fokker- 
Planck equation for the special case of equilibrium metric, w(F) = p(/3; F). 

3.3. Driven Transport in Classical Dynamics 

It is our purpose here to point out that the projection operator techniques 
applied above to obtain microscopic Langevin and Fokker-Planck equations 
in the case of closed classical dynamics can be extended with minor complica- 
tions to apply also to driven dynamics. Since the general outline of the 
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T(Olt) = 1 + dsiL(s) + ... 

> 

�9 .. iL(sa) + . . . .  exp 

The corresponding Solution to the driven 

f~(t; F) = T*(Olt)f~(O; F) = ~(+--exp 
t. 

derivations remains unchanged, we shall be brief, focusing on the more 
important differences and their consequences. A more detailed development 
is available elsewhere. (24) 

In the case of driven transport, the Hamiltonian consists of two terms, 

H(t; F) = Ho(r) + Ha(t; F) (52) 

where the last term accounts for some time-dependent external force applied 
to the system. Similarly, the Liouville operator in the dynamical Hilbert 
space of the system splits into two parts, 

L(t) = Lo + La(t) (53) 

where the latter part, due to the external driving force, is defined by 

LI(t)A(F) = - i{A(F), Ha(t; r)}pa (54) 

for any P-space function A(F). 
Hamilton's equations hold, and they yield 

(8/Ot)A(t; F) = [iL(t)A(L')]r,=ra:r) = T(OIt)iL(t)A(F) (55) 

for the equation of motion of a property of the system. The first complication 
arises from the fact that in the presence of the driving force it will be more 
difficult to find stationary weighting functions other than w(P) = 1. As a 
consequence, the adjoint of the Liouville operator will be 

L*(t) = L(t) + (L(t)w(r))/w(F) (56) 

and will be different from L(t) when the second term does not vanish. Thus 
we may have to work with a non-Hermitian Liouville operator. 

Another complication arises due to the time dependence of L(t) in 
solving (55), but in the formal theory the result can be written as 

A( t ;F )=T(O[ t )A (F)=  exp dsiL(s) A(F) (57) 

where the propagator TO]t) has now become the time-ordered operator 

fo' + ds~ ... ds, iL(s,) 

I f [  ds iL(s)] (58) 

Liouville equation is 

[- f[ ds~L*(s)]}fw(O; r) (59) 
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where the reversed direction of the arrow indicates a reversed direction of 
time ordering, as can be verified by taking the Hermitian conjugate of (58). 
We note that the formal solutions have not only become more complicated 
in terms of notation, but the straightforward procedure of solving linear 
equations by diagonalization of the Liouville operator is no longer applicable. 

The equation of motion of the reduced state vector Pfw(t, P) is found 
to be, after some simple calculation, 

(~/~t)Pfw(t; F) 

= -PiL t ( t )P fw( t ;  r) + dsPiLt ( t )  

x @X<---p [ - f s  t dsl ( 1 -  P)iLt(sl)]}(1 - P)iLt(s)Pfw(s; P) 

t 

and the equations of motion of the first moments can be obtained as before 
by shifting operators from right to left in the scalar product. We find 

(O/Ot)(Ak)t 

f = (PiL(t)Ak)t + Jo ds PiL(s) 

t 

x {exp[fdsl (1-P)iL(s l )J)(1-PiL( t )Ak)s+(F~(t) )o  (61) 

where the fluctuating force is defined by 

____> t 

Fk(t;P)={eXP[fodS(1-P)iL(s)]}(1-P)iL(t)Ak(F ) (62) 

Equation (61) yields driven Langevin equations, and linear and bare non- 
linear transport equations by expanding the first two terms on the right in 
the variables {Ak(F)}M=I and their products and then considering f(0;  F) 
to be the g-function describing a single system or the full statistical ensemble. 
Likewise, Eq. (60) can be transformed into a driven Fokker-Planck equation 
by the same method as described above. (z4~ 

Clearly, our microscopic transport theory will generally be somewhat 
complicated by the time-dependent driving forces, but it does exist and, given 
some straightforward modifications, it can be obtained by the projection 
operator methods described in detail above for closed classical systems. 
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4. GENERALIZED B R O W N I A N  M O T I O N  T H E O R Y  BASED 
ON Q U A N T U M  M E C H A N I C S  

4.1. The Mat r ix  Formulation 

We shall show here that the state vector formulation and the projection 
operator methods used above for classical dynamics can be applied also to 
quantum dynamics, while fundamental quantum effects impose further 
limitations on the results that can be obtained. Since the Hilbert space 
methods would be exactly the same as those used above, we shall not here 
repeat the individual steps in the derivation, but merely point out and discuss 
the problems posed by the quantum effects. 

We must first take note of the rather obvious fact that it is not the 
usual Hilbert space of wave functions that we will use to obtain the quantum 
version of the generalized Brownian motion theory. In order to represent 
the state of the system as well as the properties of the system by vectors in 
the same Hilbert space, the most obvious solution is to use the well-known 
density matrix for the state and similarly well-known Heisenberg matrices 
for the properties. The unit metric would then be defined by the scalar 
product 

(A, B)= Tr(AB*)=- ~ ~ A~jB~ (63) 
~=1  j = l  

The explicit form of the matrices is, of  course, dependent upon the complete 
set of wave functions one chooses to work with, but the trace and therefore 
also the scalar product are independent of basis set used in its evaluation. 
Thus the Hilbert space structure itself is basis independent. The quantum 
Liouville equation describing the time dependence of the density matrix is 

(~/at)p(t) = - (i/h)[H, p(t)] = - iLp(t) (64) 

and this relation also defines the quantum Liouville operator L in the unit 
metric. 

Again it is possible to generalize the metric used by altering the form of 
the scalar product. As is clear from the work of Kubo (25~ and Mori, (7~ it is 
convenient to work with an equilibrium metric defined by the scalar product 

(A,B) = Tr(pB[J-lf;d;~e~Ae-~nB *) (65) 

where t'B is Ce-an, the canonical density matrix. It turns out that this form 
of metric will allow small deviations from equilibrium to be treated by a 
linear transport equation also in the quantum case. This can easily be verified 
by repeating the steps taken in Section 3.1, keeping in mind that quantum 
operators do not commute in general. 
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The projection operator methods can be used just as before to derive 
the reduced Liouville equations which play such an important role in the 
derivations here. The first problem posed by the quantum effects concerns 
the definition of a quantum Langevin equation. If we take the Langevin 
equation to be concerned with c-numbers, then we suggest that the exact 
value A~(t; F) in the classical equation should be replaced by the pure state 
expectation value (A~, p(t)) in quantum mechanics, where p(t) then must be 
an idempotent density matrix as would be constructed from a single wave 
function. This is the closest we can come to the dynamics in a single experi- 
ment but we note that due to the intrinsic quantum dispersion even the 
Langevin equation is now satisfied only in a statistical sense. 

The linear Langevin and transport equations can be obtained by exactly 
the same steps as in the classical case. However, when w~e go to the nonlinear 
theory we now find that not only the transport equation, but also the Lange- 
vin equation must be obtained by fluctuation renormalization. The point is 
that we cannot in the quantum formulation rid ourselves of dispersion even 
in the ease of a single experiment. Thus the straightforward projection 
operator techniques do not suffice to obtain an exact generalized Brownian 
motion theory of nonlinear form. This serves to emphasize the crucial role 
played by the coupling between first moments and statistical fluctuations in 
nonlinear transport theories. 

The quantum dispersion or, equivalently, the fact that in quantum 
theory the properties of the system correspond to operators which generally 
do not commute also prevents us from extending the classical derivation of 
the generalized Fokker-Planck equation to yield an analogous equation in 
quantum theory. Unless all the chosen variables commute, there is no quan- 
tum analog of the classical 3-function 3(A(F) - a). There is simply no density 
matrix in the quantum Hilbert space which assigns dispersionless values to all 
the chosen properties. 

It has been proposed by Sewell, (26) on the basis of coarse-graining and a 
limitation to macroscopic observables, that the chosen variables can be 
assumed to commute. This will suppress the quantum effects in several im- 
portant respects, and Sewell made use of this fact in a derivation of a quantum 
version of Zwanzig's Fokker-Planck equation. We would like to point out 
that the restriction to commuting variables severely limits the theory. Most 
observables, by far, do not commute. Note that if the total energy is among 
the chosen variables, then only constants of the motion could be included in 
order to satisfy the commutation requirement. Furthermore, the fact that all 
chosen variables commute leads to the absence of any Markovian terms in 
the dynamics as noted by Sewell. This is highly undesirable since the re- 
maining non-Markovian terms, which are much more difficult to deal with, 
then contain all of the dynamics. On the contrary, we feel that the variables 
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to be included in the chosen set should normally be chosen so as to maximize 
the Markovian effects and have the non-Markovian terms susceptible to 
simple approximation. Thus we conclude that the quantum effects pointed 
out above are important and must be directly confronted. 

4.2. An Extension Based on the W i g n e r - M o y a l  
Transformat ion  of Quantum Mechanics  

We have seen above that quantum mechanics can be given a Hilbert 
space structure similar to the classical one by a slight extension of the well- 
known density matrix formulation. Although the projection operators can 
be applied as before, we found that the change from classical to quantum 
mechanics brought a number of new complications into the theory. Some 
of these complications represent fundamental quantum effects and will 
persist. However, we will now show that the relationship between the classical 
and quantum theories of generalized Brownian motion can be significantly 
simplified by the use of a transformation of quantum mechanics into the 
classical r-space. 

Wigner (27> first pointed out that for certain specific purposes any pure 
quantum wave function ~(rl , . . . ,r ,;  t) can be transformed to a F-space 
densi tyf( t ;  P), 

f ( t ;  F) = (hTr) -~ ..- @1 "'" dy~ r + yl,...,r~ + y~; t) 

x r - y~,...,r~ - y~; t)ee~%Yl +"" +',Y,~/h (66) 

which was shown to satisfy a quantum mechanical Liouville equation, 

(O/Ot)f~(t; P) = - i~ f , ( t ;  P) (67) 

Under the assumption that the potential V(rz ..... r,) is analytic in all the spatial 
coordinates, he showed that the quantum Liouville operator possessed a 
series expansion in h 2 given by 

LL# = ~ ih2~Sf k (68) 
k = 0  

i,,~r = ~ pl O ~ O V 8  (69) 

i ~  = - ~2i1 hj. ! . . .  h~[ ~p~. . .  ~p~. 

~2k + 1 

• ~3r~1 ... ~3r~-V, k = 1, 2,... (70) 
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where ~ indicates a summation over all sets of positive integers h~ ..... 2. 
satisfying 

21 + 2 2 + . . . +  2 . = 2 k +  1 (71) 

Wigner also noted that the corresponding F-space density for a mixed 
quantum state with probability w~ of finding the system in the pure state r 
could be obtained by simple summation 

f(t; F) = ~ w,f(t; F) (72) 
i 

and since the Liouville equation (67) is linear, it holds also for densities 
corresponding to mixed quantum states. Moyal r later obtained Wigner's 
F-space densities by a derivation which clarified their content. In particular, 
Moyal found thatf( t ;  F), as defined by Wigner, could be used to calculate all 
quantum mechanical expectation values (caret denotes quantum operator) 

= ( dVf(t; F)G(F) (73) E 
i d 

provided only that the quantum mechanical operator G was chosen according 
to the Weyl correspondence 

x g(xz,...,y,)exp (x~ + Yl/~l) (74) 

g(xl,...,y,)= f ... f drl...dp, G(r) exp[-i ~=l(xzr~ + y~p,) ] (75) 

It should be noted that the Weyl correspondence transforms the classical 
variable q~(r)p m according to 

k = 0  

which can be immediately generalized to obtain an explicit expression for all 
quantum operators if only the corresponding classical variable is analytic 
in the momenta. 

If we recall now that quantum mechanics demands that all physical 
properties correspond to Hermitian operators in the space of quantum states 
but does not distinguish among the many possible ways of constructing such 
operators from the corresponding classical F-space function, we see that the 
Weyl correspondence imposed above is quite a natural way of satisfying the 
Hermitivity requirement and is really no limitation at all. Thus we have here a 
formulation of quantum dynamics in F-space upon which we can base a 
theory of generalized Brownian motion in exactly the same way as illustrated 
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for classical systems in previous sections. Rather than repeating the formal 
derivations, we shall here focus on the advantages gained as compared to the 
matrix representation discussed in the first part of this section and on the 
remaining quantum effects. 

Obviously, there are practical reasons to prefer a Hilbert space of P- 
space functions. Although a Hilbert space of matrices corresponding to 
quantum observables is a useful theoretical construct, the practical problems 
of calculating scalar products and expanding in terms of a chosen set of basis 
matrices are likely to be considerable and more difficult than the correspond- 
ing problems in a Hilbert space of F-functions. Moreover, it is certainly an 
advantage to include both the classical and the quantum theory in the same 
Hilbert space so that the asymptotic relationship of the two theories can be 
studied simply by taking the limit as h becomes small. Clearly, the series 
expansion (68) of the quantum Liouville operator is particularly convenient 
for the estimation of the magnitude of quantum dynamical corrections in 
terms of h 2 for various potentials. Note, for example, that linear or harmonic 
potentials lead to no dynamical quantum corrections at all. For other po- 
tentials perturbation methods based on the smallness of h 2 may be applied. 

It should be pointed out that there are also static quantum corrections 
which reside in the initial form of the density, f(0; F). We note that if 
f(t; P) is to represent a single experiment or an ensemble of experiments, 
then it must always satisfy the Heisenberg uncertainty relations, which im- 
pose a minimum dispersion on the density. This is automatically taken care 
of if we construct f(0; F) from a pure or mixed quantum state according to 
the prescription given by Wigner. The resulting density will be real, but, in 
general, not positive definite. Thus it is not a probability density in the 
classical sense, although it can be used to calculate all expectation values of 
the properties of the system. 

Clearly, we can consider f(t; P) as the state vector in the unit metric 
and in analogy with the discussion of classical systems transform to a Hilbert 
space of another appropriate metric. The equation of motion for the reduced 
state vector and the corresponding linear transport equation and bare 
nonlinear transport equations follow as before, while the exact nonlinear 
transport equations must be obtained by a fluctuation renormalization of the 
bare equations. The problem encountered in obtaining an exact quantum 
mechanical Langevin equation within the matrix representation is present 
here also. Even the density f(F) corresponding to a pure quantum state 
contains dispersion. 

With respect to the Fokker-Planck equation the situation is significantly 
improved since the reduced density P~f(t; F) obviously can be mapped into 
a density g(t; a) by the generalized coordinate transformation proposed by 
Zwanzig. Although we shall not undertake to do so here, it should be possible 
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to generalize the derivation so as to obtain the corresponding equation of 
motion for the quantum mechanical density, g(t; a). We would, of course, 
have to keep in mind that g(t; a) is not a probability density in the classical 
sense since it may take on negative values and, moreover, only a limited 
class of functions g(O; a) can properly represent an experimental ensemble. 

One may perhaps be tempted to neglect the restrictions on f(t; F) to 
define and obtain Langevin equations exactly as in the classical case by con- 
sidering dispersionless initial conditions 

f(0;  P) = 3(P - F0) (77) 

However, even so we would not be able to obtain nonlinear Langevin 
equations since the quantum dynamics does not preserve the 3-function 
property. That is, choosing initial conditions as in (77), f ( t ;  F) at a later time 
is not generally a 3-function. This is a reflection of the fact that the quantum 
operator i ~  does not have the distributive property satisfied by the classical 
Liouville operator. Thus the quantum dynamics of F-space densities cannot 
be broken up into a sum over independently developing trajectories as in the 
classical theory, but involve the fluctuations in a more fundamental way which 
can be described as an interaction among the classical trajectories. This will 
clearly require nonlinear Langevin equations to be obtained by fluctuation 
renormalization even in the case when the quantum restrictions are neglected 
and 3-function initial conditions assumed. 

5. C O N C L U D I N G  C O M M E N T S  

The unified derivation of the generalized Brownian motion theory 
presented here can be summarized in a flow chart as in Fig. 1. The original 
results of Zwanzig and Mori now fit together into a single structure, exposing 
their complementarity and common root. It is, of course, possible to apply 
projection operators directly to Hamilton's or Heisenberg's equations of 
motion for the time-dependent property vectors and thus obtain Langevin 
and transport equations32~ But the Liouville equation is a better starting 
point because it is always concerned with a single state vector and it yields, 
as we have shown here, all of the results, including the master and Fokker- 
Planck equations, very easily. The key point of this derivation which has not 
been fully exploited before is the unity and simplification achieved by 
bringing both the state of the system and its properties into the same Hilbert 
space from which the desired information is extracted by taking a scalar 
product between the state and property vectors. 

On the basis of this general derivation we have discussed a number of 
important extensions and limitations of the generalized Brownian motion 
theory which to a varying degree have not been clearly stated or properly 
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Fig. 1. Diagram illustrating the unified nature of the derivations. 

emphasized before. Probably the most important point is the limitations of 
the basically linear projection operator techniques in the derivation of the 
very important nonlinear form of the theory. Only the classical Langevin 
and Fokker-Planck equations can be obtained straightforwardly in the non- 
linear formulation. The transport equations, and in the quantum case even 
the Langevin equation describing single experiment dynamics, must be ob- 
tained by decoupling the dynamics of the first moments from that of the 
statistical fluctuations with the help of a fluctuation renormalization proce- 
dure. We have discussed such procedures in a previous article. (23~ 

In the case of the quantum Fokker-Planck equation there is a problem 
due to the fact that the chosen properties will generally not commute. For 
this reason the classical derivation does not have a direct analog in the matrix 
formulation of quantum mechanics. However, we have noted that there is 
in this respect distinct advantages in using the Wigner-Moyal P-space 
formulation of quantum mechanics as a starting point for the derivation. 
Note that in the case of a traditional Brownian motion problem, where the 
chosen properties completely describe a physically separable subsystem, the 
the reduced LiouviUe equation itself has the form of a Fokker-Planck 



370 Sture Nordholm and Robert Zwanzig 

equation if a F-space formulation is used. This point has been exploited 
already by McKenna and Frisch, (a~ who used the Husimi transform in a 
derivation of a quantum mechanical Fokker-Planck equation for a Brownian 
particle moving in a fluid/TM 

We have also shown here that the derivations can be extended in a 
straightforward manner to the case when time-dependent external forces are 
present, with only minor complications. The reduced Liouville equation for 
the case of driven transport was obtained before by Muriel and Dresden. ~2> 
The point to note here is that there is in general no stationary equilibrium 
metric. Thus we may want to stay with the unit metric or work with a non- 
Hermitian Liouville operator in a nonstationary metric. 

What we have presented here is an exact but formal generalization of 
traditional Brownian motion theory obtained by straightforward application 
of projection techniques in Hilbert space. This part of the theory is clear and 
unambiguous and very useful both conceptually and practically. Unfor- 
tunately, the simple exact methods used above do not suffice to obtain the 
nonlinear theory except for the classical Langevin equations. Other methods, 
most likely to be in the form of approximations, are needed to complete the 
theory. The conceptual advantages of starting from microscopic first principles 
are great but it must be recognized that the formal theory will only provide 
quantitative predictions after we have solved a whole range of problems 
that have merely been hinted at here. The explicit evaluation of the transport 
coefficients in the theory, particularly those that display memory effects, 
may well be an exceedingly difficult mathematical problem that will force us 
back to intuitive and empirical approximation schemes. 
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